

European Commission

MECHNICAL HARVEST AND SEEDING

Speaker: Olavur Gregersen, CEO, Ocean Rainforest Urd G. Bak, Floor Marsman, Elsa Berg; Ocean Rainforest Job Schipper; Hortimare 24-03-2021 MacroCascade Final Conference

- Method
 - String seeding
 - Direct seeding

MACRO CASCADE

Cost of hatcery
22.000m vs. 1,2 Mio. M. in a 20 ft. container

Seeding (& <

- Quality & speed
 Precision/density

 - Type of substrate
 - Glue "ability"
 - Meter/hour
- Timing
 - Deployment
 - Optimal time site dependent
 - Harvest
 - Direct seeding takes longer to grow

Species

MACRO CASCADE

- Floating
- Sinking
- Grow line system
 - Continues (e.g. horizontal)
 - "Batch" based (e.g. vertical)
- Harvest strategy
 - Single or multiple/seeding
 - Manuel or mechanical
- Harvest window
 - Months/year

Mechanical harvest and multiple partial harvest

Deliverable 1.3 on cost

	Manual harvest	Mechanical harvest
Handling time (lines/hour)	17	30
Line length (m)	7	7
Yield (kg ww/m)	3.09	3.09
Yield per hour (kg ww/hour)	367.71	648.90
Crew (persons/vessel)	3	2
Yield per person (kg ww/hour/person)	122.57	324.45
Salary (€/hour/person)	30	30
Costs (€/kg ww)	0.24	0.09

Table 3. Assessment of annual capacity assuming mechanical harvest of 30 lines per hour, <u>10 meter</u> growth lines, harvest shifts of 7 hours and a harvest season of 120 days (April – October). Annual capacity = yield per meter * length lines * lines per hour * work hours per day * producing days per year

yield/meter	1.5 kg	3 kg	6 kg
hours/day			
7 <u>(</u> 1 shift)	378 ton/year	756	1512
14 (2 shifts)	756	1512	3024
21 (3 shifts)	1134	2268	4536

A practicable seaweed biorefinery requires 10 ton ww per hour

Comparing four harvest scenarios based:

- 1. Summer 2019;
- 2. Current situation
- 3. New situation (improved harvest machine);
- 4. Underwater harvester (implementation of a harvester that is able to harvest lines without taking them up from the sea, launch within a few years from now).

Harvesting – logistics & cost

				Underwater
Harvesting scenario	Summer 2019	Current situation	New situation	harvester
harvest speed (lines/hour)	17	30	60	240
length lines (m)	7	10	10	10
yield (kg ww/m)	6	6	6	6
harvest hours per day	21	21	21	21
yield (kg/vessel/day)	14994	37800	75600	> x19 302400
crew (persons/vessel)	3	2	2	3
harvest period (days)	120	120	120	120
salary (€/hour/person)	30	30	30	30
crew costs (€/day/vessel)	2160	1440	1440	2160
vessel costs (€/day)	1500	1500	1500	3000
total costs (€/day)	3660	2940	2940	5160
costs (€/kg)	0.24	0.08	0.04	0.02
biorefinery requirements (kg/day)	240000	240000	240000	240000
required vessels	16	6	3	1
total costs (€/day)	58583.43	18666.67	9333.33	- 86 % 4095.24

MACRO

CASCADE

Table 4. Cost comparison between four harvest scenarios at Ocean Rainforest; [1] summer of 2019, [2] current situation (expected situation for harvest season 2020 including harvest machine, as a result of MacroCascade), [3] new situation (improved harvest machine) and [4] underwater harvester (implementation of a harvester that is able to harvest lines without taking them up from the sea, launch within a few years from now).

European

Commission

HORIZON 2020

• Tubs

MACRO

- Nets
- Barge
- Pre-processing on-board

- Direct seeding is efficient, but requires longer harvesting window compared to string seeding
- Mechanization of seeding is underway. Target is 2000m/hour
- Substrates and glue are important parameters
- Mechanical underwater harvester is most suitable. Target is 2400m/h
 - Potential cost reduction from €240 to €20/tons wet weight
- Yield has a direct impact on OPEX of harvest higher yield/m \rightarrow lower cost/kg
- Logistics has to take into account
 - Transport distance between farm and processing
 - Throughput capacity/day to process fresh material into storage stable condition
 - A biorefinery will require 50-200 tons wet weight/day

This presentation is part of the Macro Cascade project. This project has received funding from the European Union's Horizon 2020 Bio-Based Industries Joint Undertaking (BBI JU) under grant agreement No 720755

https://www.macrocascade.eu/