

CONDITIONING, PRE-TREATMENT AND STORAGE

Speaker: Søren Ugilt Larsen (DTI)

Results from project activities by DTI and Ocean Rainforest

24-03-2021 MacroCascade Final Conference

- Seaweed biomass is harvested at specific times of the year
 - -> year-round processing requires storage from harvest to further biorefining
- Seaweed biomass has high water content
 - -> dewatering may reduce the quantity of biomass to be handled
 - -> drying may preserve constituents but requires energy
 - -> ensiling may be energetically advantageous to drying
- Pre-treatment and storage should preserve valuable constituents

Dewatering / chopping

- Screw-pressing of fresh seaweed can produce a solid fraction with a high share of the DM
- A possible step before drying
- There is still some DM in the liquid fraction – must be handled
- Screw-pressing / chopping may aid consolidation of the biomass and potentially the ensiling process

- Drying can be done by various technologies, e.g. rotary dryers, conveyor dryers, flash dryers and fluid bed dryers
- Drying costs must be weighed against preservation of valuable constituents

Drying

- Lower temperature causes slower drying, and some moisture may still retain in the biomass
- Dried seaweed must be stored airtight to avoid subsequent water absorption

Drying

 Carbohydrates and proteins may both be affected by increasing drying temperature – but drying at 40°C generally ensures good preservation

CASCADE

Sugar content of seaweed after drying at various temperatures.

- 'Biological ensiling': Production of organic acids by bacteria
- 'Chemical ensiling': Addition of mineral or organic acids

Various ensiling experiments with *Saccharina latissima*: Effects of ensiling additives and duration on pH, carbohydrate composition and protein content

- Lab-scale ensiling in vacuum bags up to 12 months
- Pilot-scale ensiling in barrels 12 months

Procedure for lab-scale ensiling

Frozen Saccharina latissima

Additives added into bags with 50 g of biomass

Vacuum packing and storage at 20°C Freezing after pre-planned ensiling time

The solid fraction chopped, liquid fraction added in original proportion

Duplicates or triplicates
Destructive sampling for later analysis
of pH, carbohydrates etc.

Ensiling of S. latissima

- Often poor ensiling without additives but ensilability differs between batches!
- Lack of inoculum and especially WSC appears to limit ensiling

Long-term ensiling - pH

Both biological and chemical ensiling can retain low pH (≤4.3) up to one year

Long-term ensiling – glucose

- Initial conversion of glucose to lactic acid during biological ensiling
- Glucose content stabilized by chemical ensiling
- Some degradation of lactic acid over time

Long-term ensiling – protein

- Total amino acids (AAs): Only significant reduction without ensiling additives
- Protein-bound AAs: Reduced for all treatments but less with chemical ensiling

Pilot-scale ensiling for 12 months

Harvest of cultivated S. latissima

CASCADE

Chopped biomass mixed with additives Either glucose+inoculum or lactic acid

Ensiling in 68 L barrels for 12 months

No mould on the surface – oxygen effectively excluded! (quality barrels)

Draining of liquid fraction from solid fraction, analyses for mass balance

Pilot-scale ensiling for 12 months

- Carbohydrate analyses of solid and liquid fractions after 12 months ensiling
- A general reduction in carbohydrate concentration after ensiling
- Generally larger reduction in the liquid fraction

Barrel no. and	Fraction	Glucose	Galactose	Fucose	Mannitol
additive treatment		(% in DM)			
Fresh unensiled	Total	9.8% ± 3.4%	$2.4\% \pm 0.6\%$	$3.4\% \pm 1.6\%$	$9.5\% \pm 0.2\%$
Barrel 1: Sucrose (10.3		$10.1\% \pm 0.1\%$	2.1% ± 0.2%	$1.1\% \pm 0.1\%$	5.1% ± 0.6%
g/kg FM) + SiloSolve	Liquid	$0.8\% \pm 0.3\%$	$1.0\%\pm0.0\%$	$1.4\%\pm0.2\%$	$3.2\% \pm 0.7\%$
Barrel 1: Lactic acid (7	Solid	$12.3\% \pm 0.8\%$	2.9% ± 0.2%	$2.0\% \pm 0.0\%$	$2.4\% \pm 0.4\%$
g/kg FM)	Liquid	$0.7\% \pm 0.5\%$	$0.9\% \pm 0.0\%$	$1.1\% \pm 0.1\%$	$3.3\% \pm 0.5\%$

CASCADE

Pilot-scale ensiling for 12 months

- Glucose primarily in the solid silage fraction
- 51-64% glucose recovery, highest with chemical ensiling with lactic acid

CASCADE

MACRO CASCADE

IBC containers shipped from ORF Approx. 60.000 kg silage in 2020!

Conclusions

- Dewatering by e.g. screw-pressing can give a solid fraction with most of DM – i.e. smaller quantity to be handled
- Drying at relatively low temperatures (≤40°C) can preserve carbohydrates and protein relatively well
- Ensiling is energetically interesting for preservation of wet seaweed but carbohydrates are consumed and protein may be degraded
- Choice of preservation method for seaweed may depend on the costs and the subsequent application of the biomass

Acknowledgement

This presentation is part of the Macro Cascade project.

This project has received funding from the European
Union's Horizon 2020 Bio-Based Industries Joint
Undertaking (BBI JU) under grant agreement No 720755

https://www.macrocascade.eu/