

MICROBIAL REFINING OF ALGAL BIOMASS FOR FOOD AND FEED INGREDIENTS (WP3)

Speaker: Anne S. Meyer DTU

24-03-2021

MacroCascade Final Conference

WP3 Objectives

5 main objectives:

- 1) Convert algal biomass anaerobically into feed ingredients by ensiling
- 2) Convert algal biomass and *rapeseed cake* into **feed** ingredients
- 3) Develop algae-based *prebiotic* and *probiotic* animal **feed** ingredients

 \rightarrow Legarth next presentation

- 4) Develop bioactive **food** ingredients with dietary fibers/prebiotics from algae \rightarrow Villadsen next presentation
- 5) Develop aerobic bioconversion process for production of *prebiotic carbohydrates* and *bio-colorants*, **feed** and food
- 6) WP5: D5.3. Development of catalytic processes for conversion of fucoidan to bioactives

European Commission

Macrocascade Concept

MACRO

CASCADE

MICROBIAL AND ENZYMATIC REFINING OF ALGAL BIOMASS FOR FOOD AND FEED INGREDIENTS (WP3)

Speaker: Anne S. Meyer DTU

24-03-2021

MacroCascade Final Conference

- Alginate: Hydrocolloid of uronic acids: Gel formation; mostly 'G'
- Laminarin: Potentially bioactive glucan: β-1,3 and β-1,6-linkages
- Carbon for microbial carotenoid production & probiotic growth
- Fucoidan: Fucose-rich sulfated polysaccharides

 Many high-end biomedical bioactivities
- Unique Red Seaweed: Palmaria palmata;
 - mixed-linkage-xylan oligos support growth of *Lactobacillus pentosus*

Enzymatic alginate improvement

J of Fungi 7, 80-95, 2021

Rhodothermus marinus grows on alginate

Neg

R. marinus grown on alginate

	OD@620nm	
376 glc/pyr	5,17	1.
493 glc/pyr	4,09	
376 alg	0,87	10
493 alg	1,17	2.
376 alg/pyr	2,76	
493 alg/pyr	2,74	
376 alg/mono	3,01	3.
493 alg/mono	3,03	
Neg alg	0,093	
Neg alg/pyr	0,092	4.
Neg alg/mono	0,071	

- Media tested:
 - 1. Alginate (1%)
 - 2. Alginate (1%) + pyruvate (10mM)
 - 3. Alginate (1%) + monouronic acids
 - 4. Glucose (10g/l) + pyruvate (10mM)
- Strains; 376, 493 and negative control for all media.
- Conclusion: R. marinus can use alginate as the main carbon source producing large quantities of carotenes

376

493

¹DW means dry weight of the extracts

R. marinus Fed-batch cultivation and carotenoid production

- Glucose consumption rate :0.46 g/l.h
- Feed solution: trace elements 100ml/L, glucose 0.56 M (100 g/L), NH₄Cl 0.2 M (10.7 g/L), CaSO₄ 2.3 mM and phosphate buffer 200 mM
- Initial working volume of medium in bioreactor: 500ml

Carotenoids from Rhodothermus marinus

Carotenoid identification and engineering

- > Native carotenoid: a monocyclic γ -carotene (or β , ψ -carotene)
- Pathway engineering
- > Extraction from *Rhodothermus marinus* strains, and MS identification.
- Lycopene production in engineered variant confirmed.

Ron et al, Microbiol open, 2018 Kristjansdottir et al, Met Eng Comm, 2020

Phosphoketolase pathway

Månberger et al, 2020 Scientific Reports

European Commission

Product profile

Butyrate production occurs via fatty acid synthesis (II) pathway,

(Figure from Botta et al, 2017, Sci. Rep.)

P - production, U - uptake, n.d. – not detected.

Carbohydrate	Carbohydrate	Fermentation products				
	fermentation	Lactate	Ethanol	Acetate	Propionate	Butyrate
1 mL cultivation – microa	ierophilic			-,	- 1	
Glucose	+	Р	Р	U	n.d.	n.d.
Laminaribiose	+	Р	Р	Р	n.d.	n.d.
Laminaritriose	-					
Laminaritetraose	-					
Arabinose	+	Р	n.d.	Р	n.d.	n.d.
Arabinobiose (A ₂)	+	Р	n.d.	Р	n.d.	Р
Arabinotriose (A ₃)	-					
Arabinotetraose (A ₄)	-					
Arabinopentose (A ₅)	-					
N-Acetyl-glucosamine	+	Р	Р	Р	n.d.	n.d.
Diacetyl-chitobiose	-					
75 mL cultivation – anaer	robic					
Glucose	+	Р	Р	Р	n.d.	n.d.
Arabinose	+	Р	n.d.	Р	n.d.	Р
Xylose	+	Р	n.d.	Р	n.d.	Р
Negative control	-					

Månberger et al, 2020, Sci Reports

Maria Dalgaard Mikkelsen

Complex structure and high molecular weight

Fucoidans:

2-10% of brown seaweed dry-weight

Bioactive compound

- Anti-inflammatory
- Anti-oxidant
- Anti-tumoral
- Anti-viral
- Anti-coagulant
- Anti-thrombotic
- Immunomodulatoric

European Commission

Fhf1 fucoidan oligosaccharides (NMR)

Maria Dalgaard Mikkelsen

This presentation is part of the Macro Cascade project. This project has received funding from the European Union's Horizon 2020 Bio-Based Industries Joint Undertaking (BBI JU) under grant agreement No 720755

https://www.macrocascade.eu/