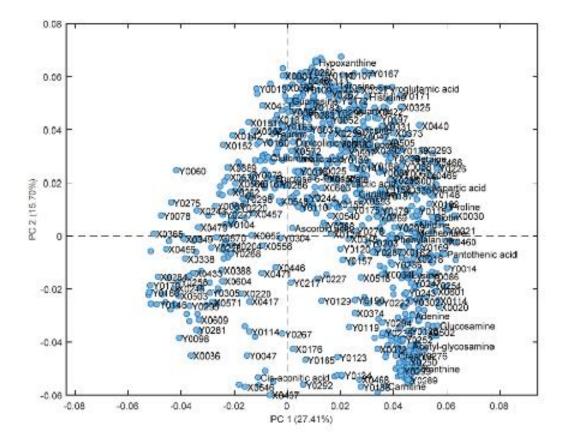


FERMENTATIONEXPERTS & EUROPEAN PROTEIN

ABOUT FERMENTATION



Designer protein

- We can ferment most protein sources
- > We can convert indigestible sugar into lactic acid (5-10%)
- Several advantages will pay for the drying cost
- > Higher protein, phosphorous, fibre and energy digestibility
- Our dry products contain live bacteria and enzymes

ABOUT FERMENTATION

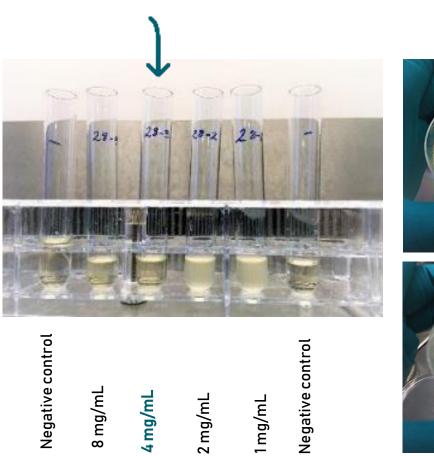
Compounds in fermented EP products

- Essential amino acids
- Polyunsaturated fatty acids
- Bioactive phenols

Anti-oxidants Anti-microbial Anti-inflammatory

- **Vitamins from B-complex**
- **Phytate solubilization**

Myo-inositol production


Fiber solubilization

Sugars Prebiotic oligosaccharides

- Lactic acid
- Bacterial biomarkers

Tomorrow's solutions... today 🛙 🥠

BACTERIA*

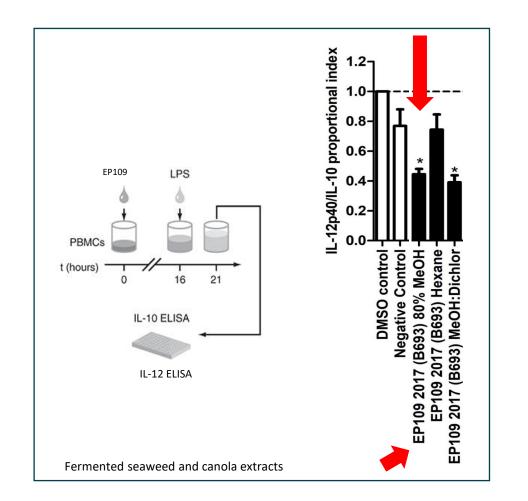
EP-product

Bacteria inhibition:

Clostridium perfringens

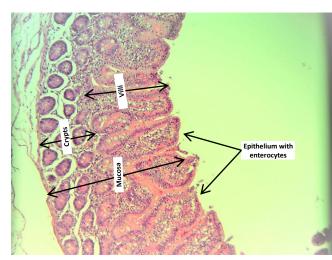
EP-products inhibit growth of *Clostridium perfringens*

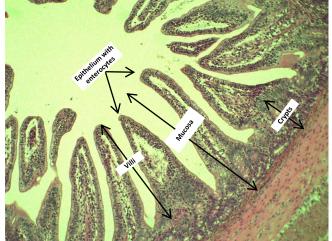
1 g of EP-product has 150 mg/mL of *C. perfringens* inhibitory compounds!


Photo 1: European Protein laboratory test on several batches of an EP-product. The test evaluates the lowest concentration of an antimicrobial agent that inhibits the growth of bacteria (MIC). Photo 2 and 3: *Clostridium perfringens* grown on medium Nutrient agar (20 h at 37 °C) without and with EP-products.

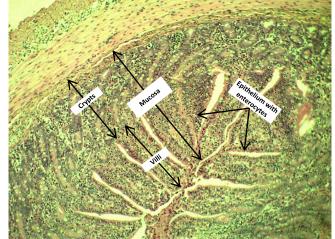
IN VITRO ANTI-INFLAMMATORY EFFECT

Fermented seaweed and canola extracts

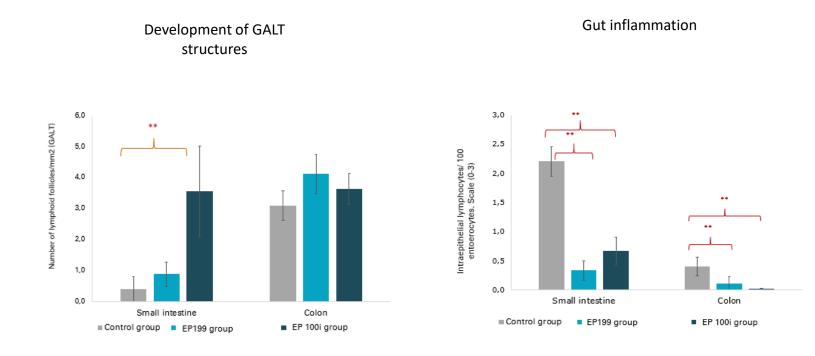

- Test of different fermented seaweed and canola extracts in peripheral blood mononuclear cells (PBMC) assay using 3 different human donors.
- Lipopolysaccharides (LPS) or endotoxins found of the outer membrane of Gram-negative bacteria was used to stimulate an inflammation in matured human PBMCs.
- Response was measured by inhibition of IL12 proinflammatory cytokine and induction of anti-inflammatory cytokine IL10 by extracts.


Small intestine - Jejunum

Magnification 10X – slide 1. *Mucosa including villi and crypts was analyzed under the microscope*


Basal group

Zinc group


EP100i group

Thinner mucosa in jejunum in comparison with zinc and EP100i groups. It is a sign of under developed gut

Lose mucosa in jejunum in comparison with basal and EP100i groups. It is a sign of physiological stress, indicating a gut that is vulnerable to pathogen invasions and inflammation Thigh and packed mucosa in jejunum in comparison with basal and zinc groups. It is a sign of a well developed gut.

GUT MODULATION

Inflammation

0: normal

(no deviation from the norm)

1: low

(slight infiltration, but no damage to the stroma or epithelium)

2: moderate

(signs of weak inflammation with some disruption to epithelial continuity and intestinal blood-barrier)

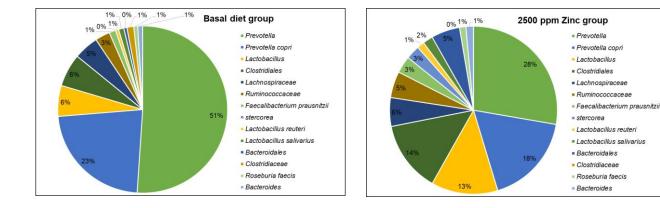
3: severe

(moderate inflammation with damage to the epithelium and intestinal blood-barrier).

Figures are data from an *in vivo* trial in nursery pigs. Piglets were fed with a commercial basal diet used as positive control and with the addition of fermented seaweed and rapeseed into the basal diet. Blood, gut content and gut tissues were sampled from N=10 piglets after 4 weeks of the dietary regimes. Differences between groups (T-test; p < 0.05).

GUT MICROBIOME MODULATION

INCREASED BACTERIAL EVENNESS


2% 1%1%

1% 1%

15%

1%

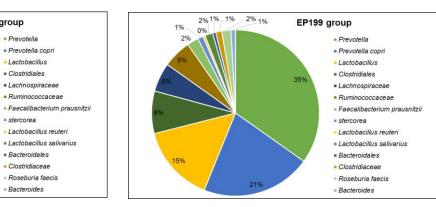
1%

EP100i group

Prevotella

Prevotella copri

Lactobacillus

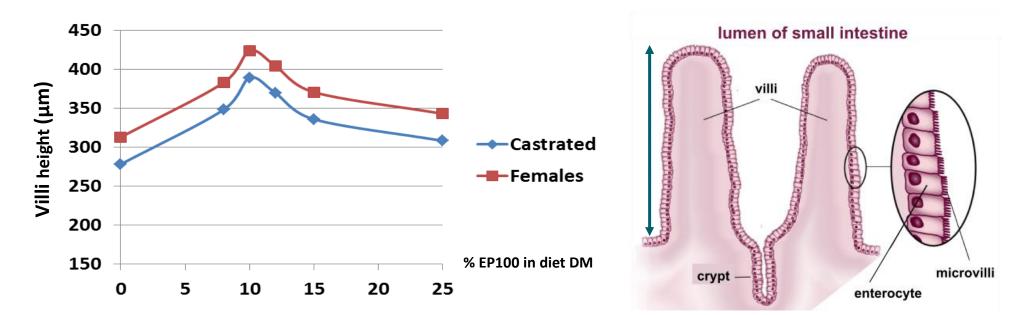

Clostridiales

stercorea

Bacteroidales

Clostridiaceae

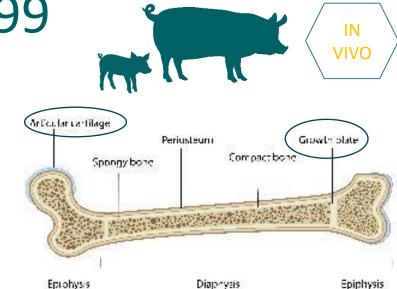
Bacteroides


Increased number of recognized beneficial gut bacteria

	Basal diet	10 % EP199	10 % EP100i
Lactobacillus spp.	5.9	14.8	14.5
Lachnospiraceae spp.	4.7	5.6	5.7
Ruminococcaceae spp.	2.8	5.4	4.2
Faecalibacterium			
prausnitzii	1.2	2.2	2.0
Lactobacillus salivarius	1.0	1.5	1.6

Even dominance of several bacterial groups corresponds to improvement in animal health and performance as they improve aut-homeostasis

SMALL INTESTINAL VILLI HEIGHT (6 SLAUGHTERED PIGLETS D11 AFTER WEANING PER TG)


EP100:

- Increased small intestinal villi height <35% (maximal effect: 10% EP100i in diet)
- Stimulated extensive folding of villi => $\uparrow \uparrow \uparrow$ increase in surface area
- Immune cell infiltration and enterocyte morphological changes absent
 - Also in colon

MATERNAL FEEDING OF EP199

Improved bone structure and mechanical properties of offspring₁

The fermentation process of EP-products makes nutrients more available. Through a better absorption of minerals like calcium and phosphorous during gestation, the piglets development of bone density, growth plate and articular cartilage are improved.

Table 4: Bone properties of samples from knees of 77 days old piglet.

Basalgeon etric properties	Unt	Group control	DFRSM	P-value
Bone length	mm	143	156	0.006
Bone weight	g	149	156	0.036
Grow th plate cartilage	Unt	Group control	DFRSM	P-value
Totalcartilage thickness	μm	1369	2100	< 0.001
Articular cartilage	Unt	Group control	DFRSM	P-value
Totalcartilage thickness	μm	2067	3640	< 0.001
Structuralproperties	Unt	Group control	DFRSM	P-value
<i>Structural properties</i> Yield bad	Unit KN	Group control 1,64	DFRSM 1.88	P-value 0.012
		-		
Yell bad	kN	1.64	1,88	0.012
Yield bad Ultin ate bad	kn kn	1.64 1.91	1.88 2.26	0.012 0.038
Yeld bad Ulin ate bad Stiffness	kN kN N/mm	1.64 1.91 830	1.88 2.26 1067	0.012 0.038 0.021

Source: 2019, Trial: "A fermented rapeseed meal additive: Effects on Production Performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. <u>https://www.ncbi.nlm.nih.gov/pubmed/31890914</u>

Tomorrow's solutions... today |

MATERNAL FEEDING OF EP199

Table 5: Mineral content of blood in sows and piglets.

	Gibs			Sow s			
Minerals	Units	Control	FRS	P	Control	FRM	P
LATE PREGNANCY n=6							
Phosphorus	mmoll^-1	1.42	1.70	P≤0 D5	138	1.88	P≤0 D1
Copper	µ mol 1^-1	2619	32.47	P≤0 D5	23.37	28 09	P≤0 D1
Iron	µ mol 1^-1	15.38	21,06	P≤0 D5	13.88	1918	P≤0 D1
LATE LACTATON n=6							
Phosphorus	mmoll^-1	1.87	2.31	P≤0 D5	1.76	224	P≤0 D1
Magnesium	mmoll^-1	104	127	P≤0 D5	103	128	P≤0 D1
Copper	µ mol 1^-1	12.66	1615	P≤0 D5	14.65	18.31	P≤0 D1
Iron	µ mol 1^-1	18.78	25.43	P≤0 D5	23.54	2917	P≤0 D1
Zinc	µ mol 1^-1				1418	17.78	P≤0 D1
OFFSPRING n=12							
Phosphorus	mmoll^-1	197	2.42	P≤0 D5			
Cakim	µ mol 1∿1	2.58	3.12	P≤0 D5	2 53	304	P≤0 D1
Copper	µ mol 1^-1	20.66	2691	P≤0 D5			
Zinc	μ mol 1^-1	787	1029	P≤0 D5			
Iron	µ mol 1∿1	27 81	35.33	P≤0 D5	28 D2	37.51	P≤0 D1

Sows: For both gilts and sows the content of phosphorous, copper and iron is significantly higher than in the control group during pregnancy and lactation.

Piglets: Offspring from primiparous sows have a higher content of all minerals in their blood. For piglets from multiparous sows calcium and iron content is improved.

Blank spaces mean, that there is no statistical siginificant difference

Source: 2019, Trial: "A fermented rapeseed meal additive: Effects on Production Performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. <u>https://www.ncbi.nlm.nih.gov/pubmed/31890914</u>

MATERNAL FEEDING OF EP199

Table 6: Blood analysis in sows and piglets.

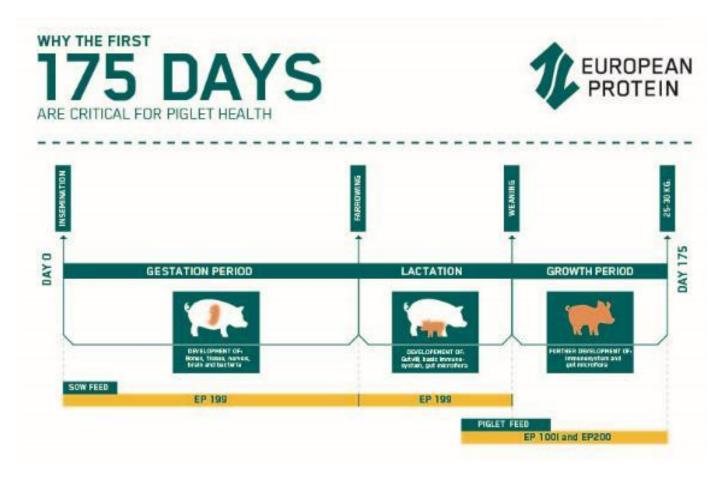
		G	ilts	
Bbod	Units	Control	FRS	P
LATE PREGNANCY n=6				
Haem atocrit	00	38.77	41.12	P≤0,05
Haem og bbin	mmoll^-1	7 O1	7 88	P≤0.05
Red bbod cells	10^12	691	8 D1	P≤0.05
LATE LACTATON n=6				
Haem atocrit	00	3623	3917	P≤0.05
Haem og bbin	mmoll^-1	456	598	P≤0.05
Red bbod cells	10~12	623	696	P≤0.05
OFFSPRNG				
Haem atocrit	mmoll-	3624	3996	P≤0.05
Haem og bbin	μ mol 1-1	692	789	P≤0,05
Red bbod cells	μ mol 1-1	6 D 3	6.76	P≤0.05

Sows: Red blood cell parameters are increased for both primiparous sows and their piglets meaning more oxygen can be carried to tissues.

HOW EP-PRODUCTS MODULATE THE GUT AND ADJUST THE BODY

Try to improve overall health through a single key

VS



Improve health by using chords to create symbiotic effects and harmony

FEEDING CONCEPT

Direct and indirect feeding to improve offspring

Research shows that up to 80 % of the piglet's DNA is founded during gestation and lactation.

FARM RESULTS – WHAT CHANGES?

Through maternal feeding, the production parameters change

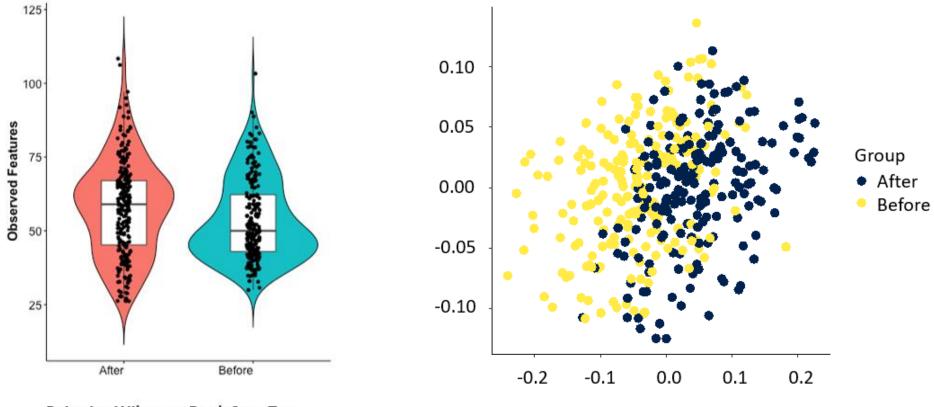
1-3 piglets more weaned per sow.

Lower mortality in both sows and piglets.

	へ
($ \ge $
	1
ļ	

Increased milking ability means more kilos produced per litter.

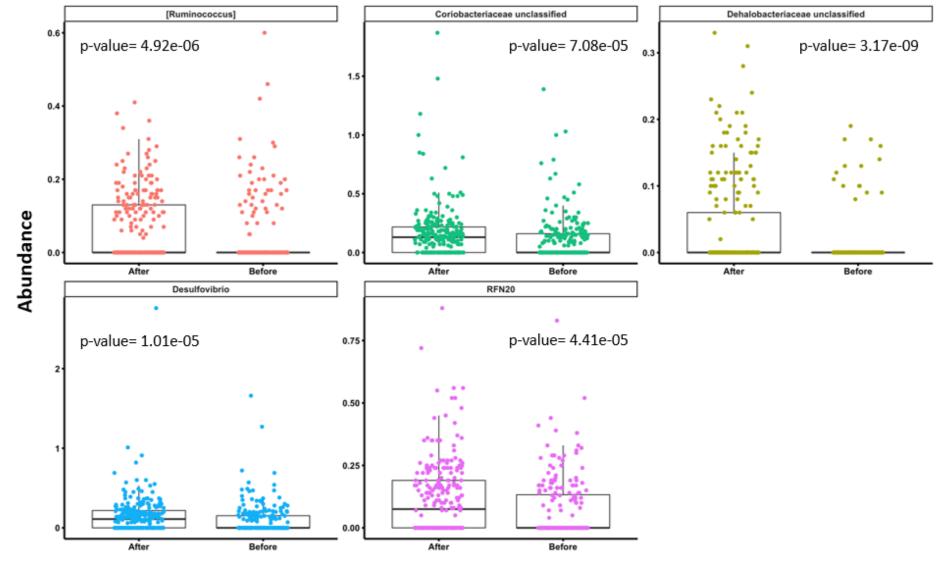
Reduction in the sow feed by 10% with same or better performance.


Reduction of **pathogens** means less handling and treatment of the animals.

Healthy animals **save time** and manual labour.

With a healthy herd, you can phase out medicinal zinc (ZnO) and lower the use of antibiotics

comparison of 19 farms before/after (n=608 samples)


Pairwise Wilcoxon Rank Sum Test

p-value: 0.0037

p-value: 0.001

Tomorrow's solutions... today 🛙 🌮

5 bacteria families (before/after)

Tomorrow's solutions... today 🕼

OUR CHALLENGES

- Market acceptance of novel functional protein sources
- Market entry local proof of concept
- Veterinarians and advisors
- Education: What is the microbiome and why is it so important?

Tomorrow's solutions ...today

omorrow's solutions... today

This presentation is part of the Macro Cascade project. This project has received funding from the European Union's Horizon 2020 Bio-Based Industries Joint Undertaking (BBI JU) under grant agreement No 720755

https://www.macrocascade.eu/

