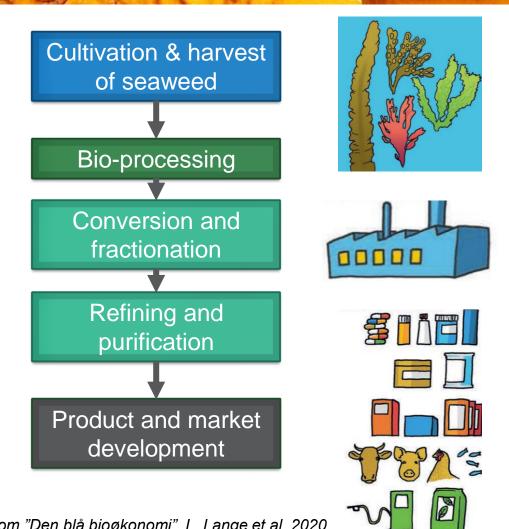


UPSCALING IMPLEMENTATION OF BIOREFINERY AND IDENTIFICATION OF MARKET BARRIERS

Speaker: Olavur Gregersen, CEO, Ocean Rainforest. Urd G. Bak, Ocean Rainforest; Thomas Vanagt, Absint

24-03-2021


MacroCascade Final Conference

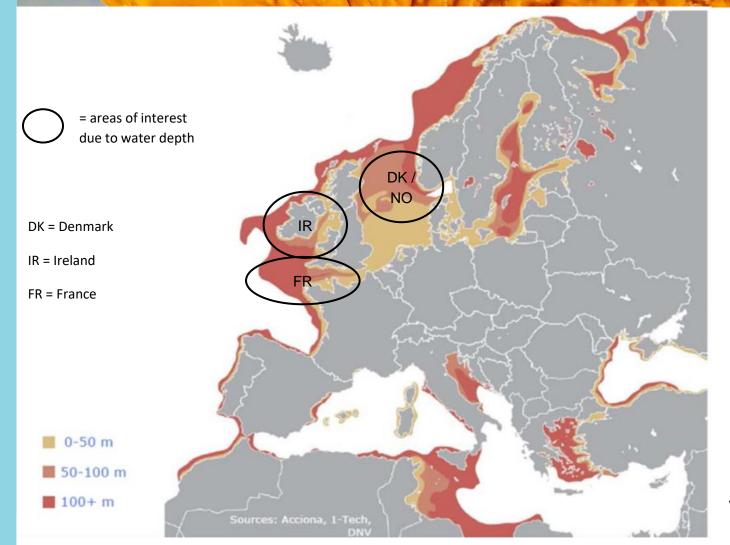
- Sustainable biomass providing reliable supply in sufficient volume
- Cost effective processes
- Competitive products

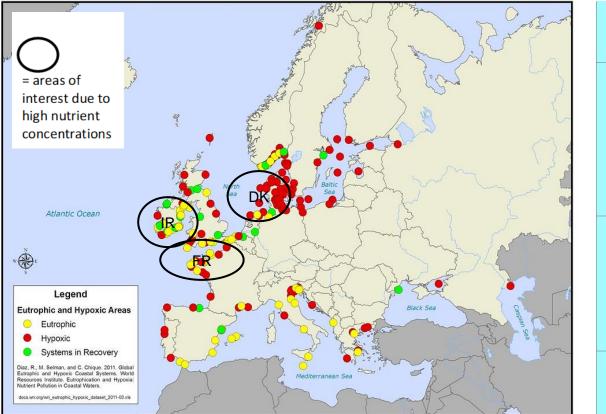
....and focus on "Scaling up the low hanging fruits"!

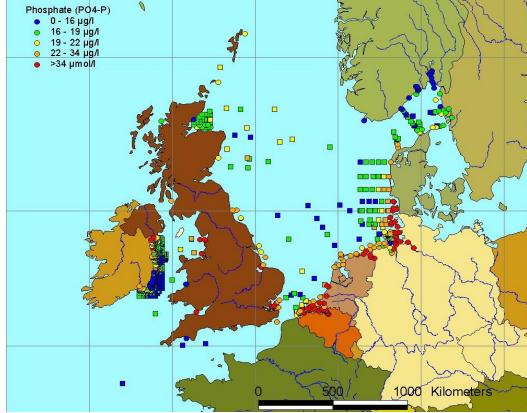
Feasbility of replication of MACR

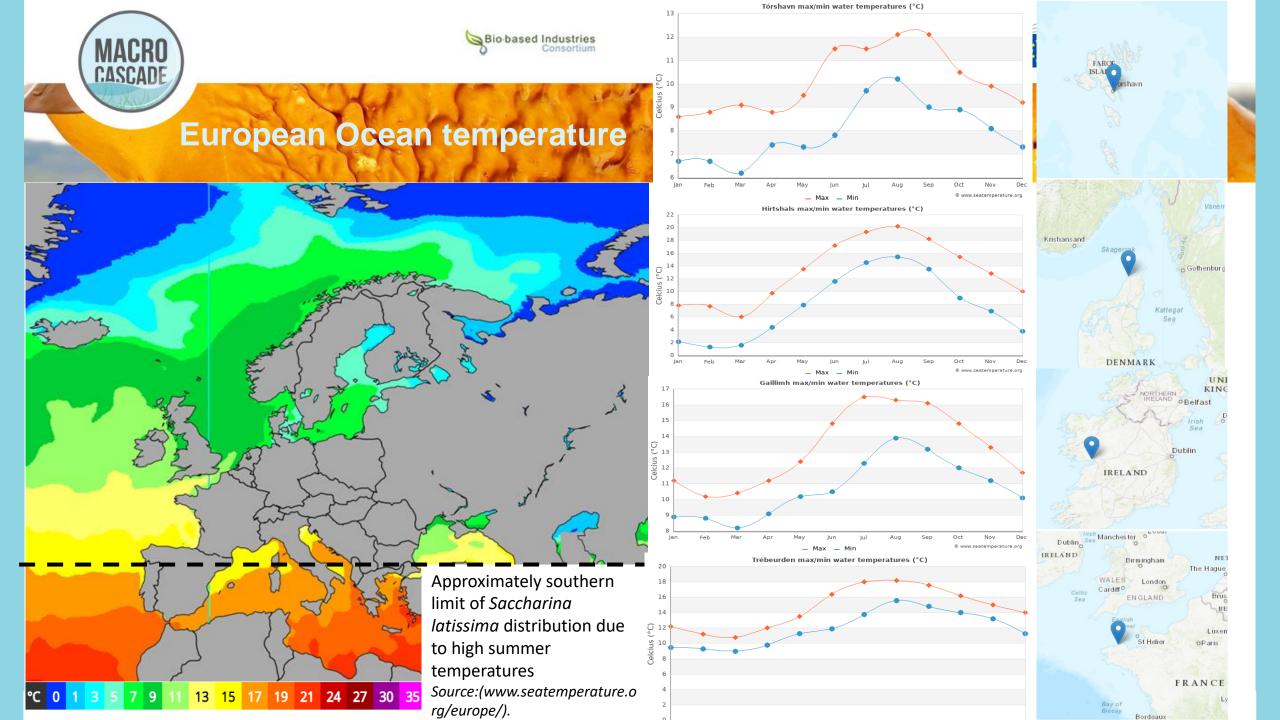
Three environmental conditions:

Water depth \rightarrow 30-150m Sea temperature \rightarrow maximum 15 C Nutrient availability \rightarrow minimum 3 μ M



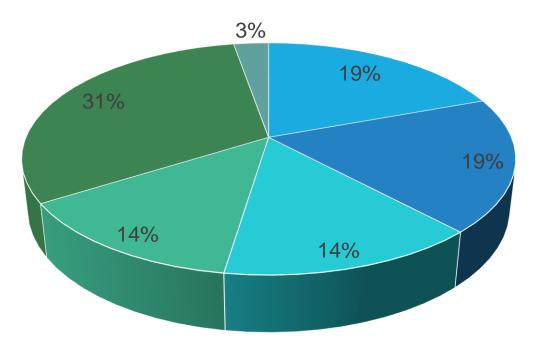

Sea depth around Europe.


Source DNV-GL, 2014 via Carbon Trust, Floating Offshore Wind:Market and Technology Review 2015.


Eutrophic and Hypoxic Coastal Areas of Europe

Eutrophic and hypoxic coastal areas of Europe. *Source: https://www.eea.europa.eu/*

Phosphate in the sea around Denmark, Ireland (and France) Source: . https://www.eea.europa.eu/



Biomass potential

- Based on the species *S. lattissma*,
 - Area: 30-150m dept
 - Cultivated on a "standard" MACR rig
 - Yield: 4kg/m/year (wet weight)
 - or 30 tons ww/year/ha
- Potential total area: 28 Mio. ha
- Potential has to be reduced due to:
 - Fishing
 - Offshore energy
 - Shipping routes
 - Protected areas
 - Sites with other activities (military, sailing routes, tourism etc.)
 - Sites near cities etc.

1% utilisation of potential area for seaweed cultivation = 8,4 Mio. tons/year

France Ireland Denmark The Netherlands Norway Faroes

Harvest & process strategy

Proven harvest periods											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Sep	Oct	Nov	Dec
France											
Ireland											
Denmark											
The Netherlands											
Norway, south											
Norway, west											
Norway, north											
Faroe Island											
Potential processing strategy											
Conversion &											
fractionation into											
storage stable											
intermediates											
Refining & purification into final products											

Other issues on implementation:

Conversion/fractionation unit:

- Fixed on one location?
- Land-based & mobile between farms?
- Floating producing vessel?

Collaboration between farms:

Cooperate on supplies to the same processing unit?

Logistics etc.:

- Transportation time
- Cost of energy
- Human resources with skills & competences

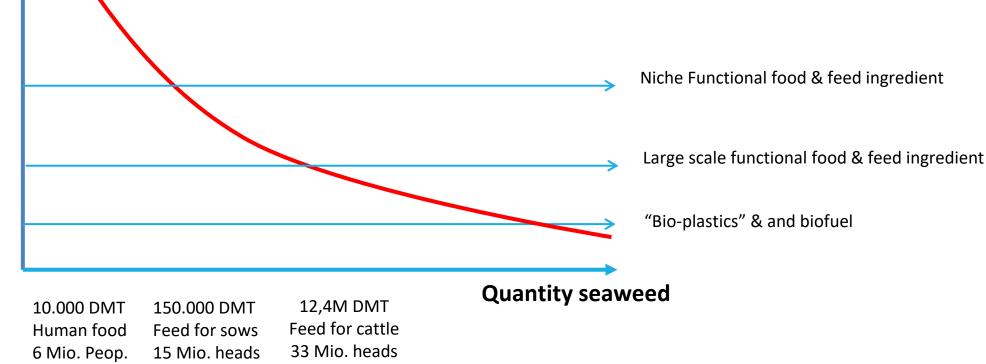
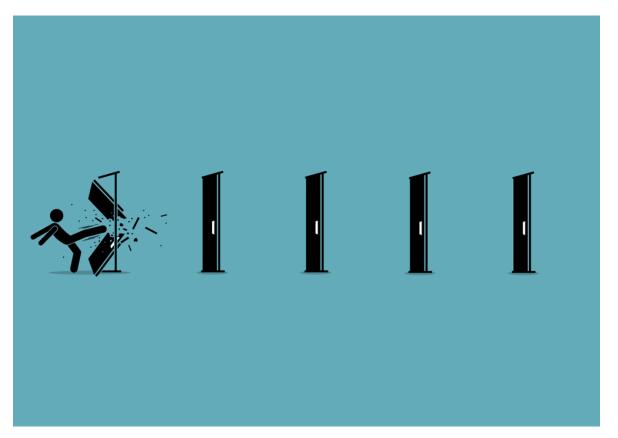


Illustration of cultivation cost Based on numbers from Ocean Rainforest 2017

Cost split related to total number of harvest from the same growth lines €4.000 €3.500 €3.000 EDMT seaweed €2.500 €2.000 €1.500 €1.000 €500 €0 2 1 4 6 ■ CAPEX rig / DMT ■ CAPEX growthlines /DMT ■ OPEX / DMT ■ Total cost / DMT

Microbioal refinery: Fermentation

Strengths	Weaknesses	
 Cost-efficient production Can contain 80-90% water. Proven pre- and pro-biotic 	 The functional fermented product is new in the market Need to conduct market development Need to document product claims. Still unknowns concerning optimized functionalities of the ensiling/fermentation process. 	
Opportunities	Threats	
 Enormous market opportunities within feed additives. Market segments: Pigs, Broilers, Salmon, Cattle Value proposition: increased health and productivity + reduction of methane emissions. Similar healthy functionality to existing stable food products for humans. 	 Slow market uptake Lack of valorisation of the methane reduction. The fermented seaweed must be mixed with canola or similar vegetable product to achieve the desired functionality. The final product must be dried in most cases and therefore requires access to large-scale drying equipment. 	


Cascading biorefinery

Strengths	Weaknesses					
 A successful cascading biorefinery can produce high, medium, and low-value products for different market segments Obtain full utilisation of the biomass. Use enzymatic extraction methods to target specific functionalities in product applications 	 No seaweed biorefinery has been demonstrated with a production of >5 tons wet weight per day. A commercial plant will require 50-200 tones (ww)/day, operating 24/7, with a minimum operation of 200 days/year. 					
Opportunities	Threats					
 Process large quantities of seaweed Sustainable production process (based on a low temperature and enzymatic processes) Can use fresh seaweed biomass In parallel ensilage for post-harvest processing. 	 Complexity of the biorefinery processes CAPEX to establish the production setup Risk for the commercial success of the operation. A potential lack of reliable fresh biomass represents an OPEX risk. 					

- Iodine content (especially food market)
- Lack of differentiation between in-organic and organic arsenic
- Premature requests on certification programs
 - Costly for start-ups
- Lack of valuation of Ecosystem Services
- License framework and marine spatial planning
 - Delays commercial up-scaling for reliable supply

- Sufficient ocean area to supply large scale seaweed processing in Europe
- Several harvests from the same seeded line improves cost-efficiency significantly – along with mechanization of harvest systems
- Important to identify product and market segments and suitable pathways into the market
- Scale up low hanging fruits with microbial refinery (fermentation)
- Pilot scale biorefinery to prove commercial methods & products
- Address market barriers to prevent hinderance of industry development

This presentation is part of the Macro Cascade project. This project has received funding from the European Union's Horizon 2020 Bio-Based Industries Joint Undertaking (BBI JU) under grant agreement No 720755

https://www.macrocascade.eu/