

EXTRACTION AND SEPARATION

Paulien Harmsen, senior scientist at Wageningen Food and Biobased Research

24-03-2021

MacroCascade Final Conference

- 1. Development of <u>scalable and sustainable extraction/separation</u> <u>methods</u>
- 2. For the production of <u>multiple products</u> from <u>brown seaweed or</u> <u>seaweed residues</u> (biorefinery approach)
- 3. By means of (enzyme aided) physicochemical/mechanical methods
- 4. Targeted (intermediate) products: <u>1 alginate, 2 fucoidan, 3 mannitol,</u> <u>4 laminarin, 5 protein, 6 polyphenols</u>

Deniaud-Bouet, E., G. Michel, T. Tonon, B. Kloareg, C. Herve and N. Kervarec 2014. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann Bot 114: 1203-1216.

Composition Sacch. Lat. (literature)

Saccharina Latissima	Autumn wt% DM	Spring wt% DM	Lit. example wt% DM	
1 Alginate	12	20	21.5	
2 Fucoidan	5	5	0.8	
3 Mannitol	22	6	17.6	
4 Laminarin	24	1	5.0	
5 Protein	6	13	10.6	
6 Polyphenols	1-3	1-3	0.6	
Cellulose	8	8		
Minerals/ash	23	36	26.2	
Other	0	11		

* Stevant, P., 2017, J. Appl. Phycol.: Ahead of Print; Schiener, P., 2016, Biomass Convers. Biorefin.: Ahead of Print.

- Alginate major component in Sacch Lat (12-20 wt%)
- Structural carbohydrate, associated with phenolic compounds in cell wall
- High molecular weight molecule (Mw 10.000-600.000 g/mol)
- <u>Divalent (Ca and Mg) salts and alginic acid insoluble, monovalent (Na and K)</u> <u>salts soluble</u>

- Industrial process, well known. Alkaline ion-exchange (Ca²⁺ to Na⁺) and purification
- Research will focus on fate other components. Minor adjustments to extraction process, e.g. no use of acids to prevent hydrolysis of laminarin and fucoidan

- Fucoidan minor component in Sacch Lat (1-5 wt%)
- Structural carbohydrate, tightly associated with proteins and cellulose in cell wall
- High molecular weight molecule (Mw ≈ 20.000 g/mol)

- Mild aqueous conditions to obtain native fucoidan (hot water or acid treatment)
- Bioactivity related to Mw/sulphate content/position sulfate ester group Isolation procedure should avoid loss of sulphate and structural alterations

• Mannitol major component in Sacch Lat (6-22 wt%)

- Storage carbohydrate (food reserve), content varies with seasons.
- Sugar alcohol (polyol), water soluble, Mw 182 g/mol

- Cold/hot water extraction, ethanol extraction
- Leaches from seaweed in fresh water

- Biomass
 - Laminarin minor/major component in Sacch Lat (1-24 wt%), content varies with seasons
 - Storage carbohydrate (food reserve), located in vacuoles present in cells.
 - Glucan polymer, DP 20-30 (Mw 3.000-5.000 g/mol)
- Extraction
 - Mild aqueous conditions to obtain native laminarin (cold/hot water or acid treatment)
 - Solubility and bioactivity related to Mw/branching

- Protein major component in Sacch Lat (6-13 wt%)
- Soluble proteins and membrane proteins (tightly associated with fucoidan and polyphenols in cell wall)
- Extraction
 - Protein extraction
 - Alkaline extraction (pH 12), acid precipitation (pH 2), T< 50 °C to prevent denaturation
 - Production of protein-enriched fractions by removal of other compounds
 - Enzymatic (proteases) to peptides/amino acids

6 Polyphenols

- Biomass
 - Polyphenols minor component in Sacch Lat (0.6 wt%)
 - Ascophyllum Nodosum reported as high polyphenol accumulating species (4.6 wt%)
 - Tightly associated with proteins and carbohydrates in cell wall Knowledge on polyphenol extraction valuable in separation of fucoidan and proteins
- Extraction
 - Polar solvents (acetone, alcohol, water). Acetone inhibits interaction between polyphenols and proteins during extraction
 - Novel techniques water based (PLE, SC-CO₂)

Fresh Frozen (FF)

Air Dried (AD)

Ensiled (EN)

Fresh Frozen (FF)

Air Dried (AD)

Ensiled (EN)

Fresh Frozen (FF)

Air Dried (AD)

Ensiled (EN)

Alginate

50 nm

CASCADE

- Biomass
 - Alginate major component in Sacch Lat (12-20 wt%)
 - Divalent (Ca and Mg) salts and alginic acid insoluble, monovalent (Na and K) salts soluble

- Industrial process, well known. Alkaline ion-exchange (Ca²⁺ to Na⁺) followed by purification
- Research focus on DSP and fate of other components

Alginate extraction

DSP: Acid precipitation vs diafiltration

- Acid precipitation
 - Large volumes of acid required to precipitate the alginate
 - Washing and neutralization
 - Loss of alginate

Addition of sodium carbonate to increase pH adds salt to the sample

- Diafiltration
 - Separation of components based on molecular size to obtain a pure solution
 - Washing and purification of alginate without the use of acid

Alginate total composition

MACRO CASCADE

Bio-based Industries

-BASED

HOR

2020

Alginate conclusions

Alginate extraction

CASCADE

- Mode of action: divalent (Ca and Mg) salts and alginic acid are insoluble, monovalent (Na and K) salts soluble
- pH1 vs pH4: Molecular weight pH4 sample seems higher, need less salts
- Acid vs diafiltration: acid precipitation removes residual neutral carbohydrates and protein
- Biorefinery approach
 - Large part of mannitol is liberated during water soaking step
 - Fucose (fucoidan) detected in low concentrations in several fractions
 - Protein detected in several fractions, reasonable amount in solid residue after alginate extraction

Alginate extraction pH 1

Protein

- Biomass
 - Soluble proteins
 - Membrane proteins, connected to fucoidan and phenols
- Extraction
 - Water
 - Acid
 - Alkaline
 - Enzymatic

50 nm

Protein extraction dried SL

Protein extraction alginate residue

Protein conclusions

- Protein extractions
 - Soluble proteins

CASCADI

- Easily extracted from seaweed with fresh water, followed by purification steps
- Membrane bound proteins
 - Extracted under alkaline conditions, conditions need to be optimized. Proteins denatured.
- Most optimal extraction method (acid, alkaline, enzymatic) depends on final application and desired product specifications
- Biorefinery approach
 - Proteins distributed in all fractions during alginate extraction
 - Soluble proteins from wash water or from press liquid, combined with mannitol
 - Membrane bound proteins from solid residue after alginate extraction Simple washing with water results in protein-enriched fraction (25 wt% protein) Advantage of alkaline extraction not clear yet

Achievements extractions

ORF seaweed	Alginate	Fucoidan	Mannitol	Laminarin	Protein	Polyphenols
Extractions studied	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Component detected	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Purified	\checkmark	\checkmark	\checkmark	×	×	\checkmark
Isolated (g- scale)	\checkmark	×	\checkmark	×	 ✓ Protein rich fraction 	✓ (mg)

Biorefinery approach

This presentation is part of the Macro Cascade project. This project has received funding from the European Union's Horizon 2020 Bio-Based Industries Joint Undertaking (BBI JU) under grant agreement No 720755

https://www.macrocascade.eu/